Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Endocr Soc ; 6(12): bvac144, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2109236

ABSTRACT

Context: SARS-CoV-2 infects cells via the angiotensin converting enzyme 2 (ACE2) receptor, whose downstream effects "counterbalance" the classical renin angiotensin aldosterone system (RAAS). Objective: We aimed to determine to what extent circulating RAAS biomarker levels differ in persons with and without COVID-19 throughout the disease course. Methods: We measured classical (renin, aldosterone, aldosterone/renin ratio [ARR], Ang2, ACE activity) and nonclassical (ACE2, Ang1,7) RAAS biomarkers in hospitalized COVID-19 patients vs SARS-CoV-2 negative controls. We compared biomarker levels in cases with contemporaneous samples from control patients with upper respiratory symptoms and a negative SARS-CoV-2 PCR test. To assess RAAS biomarker changes during the course of COVID-19 hospitalization, we studied cases at 2 different times points ∼ 12 days apart. We employed age- and sex-adjusted generalized linear models and paired/unpaired t tests. Results: Mean age was 51 years for both cases (31% women) and controls (50% women). ARR was higher in the first sample among hospitalized COVID-19 patients vs controls (P = 0.02). ACE activity was lower among cases at their first sample vs controls (P = <0.001). ACE2 activity, Ang 1,7, and Ang2 did not differ at the 2 COVID-19 case time points and they did not differ in COVID-19 cases vs controls. Additional adjustment for body mass index (BMI) did not change our findings. Conclusions: High ARR, independent of BMI, may be a risk marker for COVID-19 hospitalization. Serum ACE activity was lower in patients with COVID-19 vs controls at the beginning of their hospitalization and then increased to similar levels as controls, possibly due to lung injury, which improved with inpatient disease management.

2.
Curr Opin Nephrol Hypertens ; 30(1): 93-96, 2021 01.
Article in English | MEDLINE | ID: covidwho-1024165

ABSTRACT

PURPOSE OF REVIEW: The novel corona virus (SARS-CoV2) has been demonstrated to cause acute kidney injury due to direct cellular toxicity as well as due to a variety of autoimmune glomerular diseases. The concept of a surge of infected patients resulting in an overwhelming number of critical patients has been a central concern in healthcare planning during the COVID-19 era. RECENT FINDINGS: One crucial question remains as to how to manage patients with end stage renal disease and acute kidney injury in case of a massive surge of critically ill infected patients. Some publications address practical and ingenious solutions for just such a surge of need for renal replacement therapy. We present a plan for using a blood pump, readily available dialysis filter, and a prefilter and postfilter replacement fluid set up. This is in conjunction with multiple intravenous pumps to develop a simple hemofiltration apparatus. SUMMARY: The current set up may be a readily available option for use in critical situations where the need for renal replacement therapy outstrips the capacity of traditional hemodialysis services in a hospital or region.


Subject(s)
Acute Kidney Injury/therapy , COVID-19/epidemiology , Continuous Renal Replacement Therapy , Disasters , Hemodiafiltration , SARS-CoV-2 , Acute Kidney Injury/etiology , COVID-19/complications , Humans
3.
Med Hypotheses ; 144: 110237, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-739956

ABSTRACT

To address urgent need for strategies to limit mortality from coronavirus disease 2019 (COVID-19), this review describes experimental, clinical and epidemiological evidence that suggests that chronic sub-optimal hydration in the weeks before infection might increase risk of COVID-19 mortality in multiple ways. Sub-optimal hydration is associated with key risk factors for COVID-19 mortality, including older age, male sex, race-ethnicity and chronic disease. Chronic hypertonicity, total body water deficit and/or hypovolemia cause multiple intracellular and/or physiologic adaptations that preferentially retain body water and favor positive total body water balance when challenged by infection. Via effects on serum/glucocorticoid-regulated kinase 1 (SGK1) signaling, aldosterone, tumor necrosis factor-alpha (TNF-alpha), vascular endothelial growth factor (VEGF), aquaporin 5 (AQP5) and/or Na+/K+-ATPase, chronic sub-optimal hydration in the weeks before exposure to COVID-19 may conceivably result in: greater abundance of angiotensin converting enzyme 2 (ACE2) receptors in the lung, which increases likelihood of COVID-19 infection, lung epithelial cells which are pre-set for exaggerated immune response, increased capacity for capillary leakage of fluid into the airway space, and/or reduced capacity for both passive and active transport of fluid out of the airways. The hypothesized hydration effects suggest hypotheses regarding strategies for COVID-19 risk reduction, such as public health recommendations to increase intake of drinking water, hydration screening alongside COVID-19 testing, and treatment tailored to the pre-infection hydration condition. Hydration may link risk factors and pathways in a unified mechanism for COVID-19 mortality. Attention to hydration holds potential to reduce COVID-19 mortality and disparities via at least 5 pathways simultaneously.


Subject(s)
COVID-19/complications , COVID-19/mortality , Dehydration/complications , Saliva/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Aquaporin 5/metabolism , Body Water , COVID-19/genetics , COVID-19/physiopathology , Cytokines/metabolism , Drinking , Genetic Predisposition to Disease , Humans , Immediate-Early Proteins/metabolism , Immune System , Lung/metabolism , Mass Screening , Models, Theoretical , Osmolar Concentration , Protein Serine-Threonine Kinases/metabolism , Renin-Angiotensin System , Risk Factors , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL